Workshop on Nanoscience for Solar Energy Conversion

27 - 29 October 2008

Materials-related aspects of TiO2-based photocatalysis

Annabella SELLONI
Princeton University, Department of Chemistry
Washington Rd & William St. NJ 08544-1009
Princeton
USA
Materials-related aspects in TiO$_2$-based photocatalysis: insights from first principles simulations

Annabella Selloni
Department of Chemistry, Princeton University

“Surface science” studies of TiO$_2$:

• Structure, energetics & reactivity (mostly anatase)
• Rutile vs Anatase (energies and defects)
• A model dye/TiO$_2$ system: catechol/R-TiO$_2$(110)
TiO$_2$-based Photocatalysis: Applications and Promise

- removal of organic pollutants, purifying of water or air
- self-cleaning/desinfecting coatings (bacteria, viruses, cancer cells)
- photoelectrochemical cells, solar cells
- photocatalytic splitting of water, production of hydrogen

TiO$_2$: Anatase and Rutile

- **Rutile** is the most stable bulk phase
- **Anatase** usually more active for photocatalysis
Electronic structure: DOS (GGA-PBE)

anatase

\[
\text{Energy (eV)}
\]

\[
\text{DOS}
\]

\[
\text{eg}
\]

\[
\text{t}_{2g}
\]

rutile

\[
\text{Energy (eV)}
\]

\[
\text{DOS}
\]

\[
\text{eg}
\]

\[
\text{t}_{2g}
\]
Experimental observation: Anatase phase is most stable for nanoparticles up to ~ 14 nm.

- Proposed explanation: the smaller the crystal, the larger is the fraction of surface atoms; surface energy makes the anatase phase more favorable

[Zhang & Banfield, J. Mater. Chem. 8 (2073) 1998]
Surface energy depends almost linearly on the density of under-coordinated Ti atoms.

Anatase stoichiometric 1 x 1 surfaces

- (101)
- (100)
- (001)

DFT calculations: PBE functional plane-waves, ultrasoft pseudopots

Quantum ESPRESSO: CP90, PWscf

http://www.democritos.it
Crystal shape: theory vs. experiment

theory natural anatase anatase nanocrystals

Crystal surface energy: anatase vs. rutile

• For anatase, the most stable (101) surface constitutes 94% of the crystal surface.

• For rutile, the most stable (110) surface constitutes only 56% of the crystal surface (Ramamoorthy et al., PRB, 1994)

• Average surface energy (LDA):
 Rutile = 1.09 J/m² Anatase = 0.90 J/m²

[Zhang & Banfield, J. Mater. Chem. 8 (2073) 1998]
Anatase TiO$_2$

(Lazzeri, Vittadini, Selloni, PRB 63, 155409, 2001)
Adsorption of small probe molecules: majority anatase TiO$_2$(101)

\[\text{H}_2\text{O} \quad \text{CH}_3\text{OH} \quad \text{HCOOH} \]

\[E_a = 0.74 \text{ eV} \quad E_a = 0.75 \text{ eV} \quad E_a = 0.92 \text{ eV} \]

Molecular adsorption only (MD, 300K)

(Vittadini et al, PRL 81, 2954, 1998; JPC-B 104, 1300, 2000)
(Tilocca and Selloni, JPC-B 108, 19314, 2004)

Weak molecular adsorption \Rightarrow low reactivity, in line with the low surface energy of anatase (101)
Water on anatase TiO$_2$(101)

TPD spectrum

250 K: H$_2$O-Ti$_5$c
190 K: H$_2$O-O$_2$c
160 K: multilayer H$_2$O

No dissociated H$_2$O

CH$_3$OH: Molecular Adsorption (tiny amount of dissociation)

(Herman et al, JPC-B 107, 2788, 2003)
H_2O on anatase (101)

\[
E_{\text{ads}} = 0.69 \text{ eV / molecule}
\]

1 ML

3 ML (TL)

(ice-like structure)
Vertical order: layering
Water multilayer: adsorption energies

\[E_{\text{ads/mol}} = \left\{ E(B) - E(A) - n \cdot E(H_2O) \right\} / n \]

Trend in estimated desorption T in agreement with TPD experiments
Adsorption of small probe molecules: minority anatase TiO$_2$(001)

Dissociative adsorption \Rightarrow high reactivity, in line with the high surface energy of anatase (001)
SFG spectrum of methanol on thin, nanoparticulate film of TiO$_2$. Peaks at 2844 & 2953 cm$^{-1}$ → symmetric and antisymmetric vibrational modes of molecular methanol. Peaks at 2816 & 2919 cm$^{-1}$ → symmetric and antisymmetric modes of adsorbed methoxy CH$_3$ groups.

~50% of dissociated MeOH & H$_2$O on ~2nm anatase nanoparticles inferred from SFG intensities

SFG: Wang, Groenzin, Shultz JACS 2004, 2005
Anatase TiO2 single crystals with a large percentage of reactive facets

See also: A. Selloni, Nature Materials 7, 613 (2008)
Anatase (001): (1x4) reconstruction

- Clean anatase (001) is actually reconstructed!
 Herman et al. PRL 84, 3354 (2000)

\[\gamma = 0.90 \quad \rightarrow \quad \gamma = 0.51 \]

- Most favorable model imply the formation of a polymer of TiO$_2$ units adsorbed on the surface. This lowers the surface energy from 0.90 to 0.51 J/m2
 (Lazzeri & Selloni, PRL 87 (2001) 266105)
Water on anatase TiO$_2$(001)-1×4

- **On hill**
 - Side view
 - Two unit cells
 - $E_{ads} = 1.82$ eV

- **On terrace**
 - $E_{ads} = 1.18$ eV (molecular, weaker than on 1x1)

Can the surface be functionalized before reconstructing?

Gong et al., JCPB 110, 2804(2006)
Anatase vs Rutile: point defects
...much of the surface chemistry of metal oxide is defect-driven...

Step edges:

- Very common at crystal surfaces.
- Key role in roughening, faceting, growth...
- On nanocrystals, a large fraction of atoms are at steps

Color change in TiO$_2$ samples induced by increasing level of oxygen vacancies

Defects change electronic properties of the material
Structure and STM images

Anatase (101)

Empty state STM image of anatase (101)
Diebold & co. (2008)

Rutile (110)

Empty state STM image of rutile (110) (bright rows \equiv Ti atoms)
Much fewer point defects point defects on anatase (101) vs rutile (110) under similar preparation conditions!
Comparing O-vacancy formation energies

Anatase (101)

Anatase (001)- 1x4

Rutile (110)
Anatase (101)

<table>
<thead>
<tr>
<th>Vo1</th>
<th>Vo2</th>
<th>Vo3</th>
<th>Vo4</th>
<th>Vo5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.15</td>
<td>(5.40)</td>
<td>(4.73)</td>
<td>3.69</td>
<td>3.65</td>
</tr>
</tbody>
</table>

Anatase(001)-1x4

<table>
<thead>
<tr>
<th>Vo1</th>
<th>Vo2</th>
<th>Vo3</th>
<th>Vo4</th>
<th>Vo5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.57</td>
<td>5.17</td>
<td>4.29</td>
<td>4.78</td>
<td>4.10</td>
</tr>
</tbody>
</table>

Rutile(110)

<table>
<thead>
<tr>
<th>Vo1</th>
<th>Vo2</th>
<th>Vo3</th>
<th>Vo4</th>
<th>Vo5</th>
<th>Vo6</th>
<th>Vo7</th>
<th>Vo8</th>
<th>Vo9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.68</td>
<td>4.50</td>
<td>3.99</td>
<td>5.23</td>
<td>4.73</td>
<td>5.28</td>
<td>4.46</td>
<td>4.67</td>
<td>4.38</td>
</tr>
</tbody>
</table>
Prediction

- **Anatase**: O-vacancies prefer subsurface rather than surface sites.
- **Rutile**: surface O-bridging and sub-bridging sites are favored with respect to subsurface and bulk sites

agrees also with resonant photoemission data (Thomas, Flavell & co, PRB 75, 035105 (2007))
Relaxed atomic structure before (upper row) and after (lower row) creation of an O-vacancy at surface and subsurface sites of the anatase(101) surface: (a,d) Vo1; (b,e) Vo4; (c,f) Vo5. ⇒ Relaxation is more important at subsurface sites, surface is more “rigid”
Facile O-vacancy diffusion from surface to subsurface

Potential energy profile along MEP: barrier = 0.74 eV

Selected configurations along MEP
Surface vs subsurface distribution of O-vacancies in anatase is different from that in rutile.

O-vacancies are most likely to occur on the surface in rutile.

In anatase, a relatively defect-free surface is predicted, i.e. defects are mainly confined in the subsurface region.
Adsorption of catechol on TiO$_2$(110)
(collaboration with U. Diebold, Tulane)

1,2 benzenediol

Motivation:
- Model dye/TiO$_2$ semiconductor system
- Model ‘sticky molecule’ for photocatalytic cleaning of TiO$_2$ coatings (on EUV mirrors)
Step 1 (expt) -
STM measurements show the formation of a well-ordered superstructure with a 4×1 periodicity at saturation coverage.

STM images (10 x 10 nm2) of a TiO$_2$(110) surface covered with a 4×1 overlayer of catechol, recorded on the same area with sample bias voltages of (a) +0.9 V and (b) +0.6 V and a tunneling current of ~0.03 nA.
Step 2 (calc) - Adsorption structures of 0.5 ML catechol on TiO$_2$(110) from DFT (2 mol/(4x1) cell)

D1 = mono-dentate

D2 = bi-dentate

Tilted molecules favored b/c of reduced repulsion
H-bonding favors tilted D1 structures
Adsorption structures & simulated STM images of 4x1 ML catechol on TiO$_2$(110) from DFT calcs
Step 3 (expt)

UPS valence band spectra ($h\nu = 40$ eV), from a clean TiO$_2$(110) surface and after exposure to a saturation coverage of catechol at RT. The inset shows the intensity variation of these states with the analyzer take-off angle.
Step 4 (th)

Total DOS of 4×1 ML catechol/TiO$_2$ (110) + DOS for the clean surface (back curve). Energy zero = theor Fermi energy.

Only bidentate (D2) molecules introduce states in the gap (increased mixing with Ti conduction band states)
SUMMARY & CONCLUSIONS

Catechol / TiO$_2$(110) forms two full coverage H-bonded structures, D1-D1 and D1-D2. These two structures can easily convert from one into the other via proton exchange between the surface and the adsorbed catechol.

Strong correlation between electronic structure & adsorption geometry.

Occupied states in the TiO$_2$ band gap are traps for photo-generated holes \Rightarrow D2 catechol more easily photo-oxidized than D1 catechol.
Many thanks to

Hongzhi Chen
Xue-qing Gong
Michele Lazzeri
Antonio Tilocca
Andrea Vittadini
Jianguo Wang

Ulrike Diebold & collaborators, Tulane University (experimental work)